
caBench-To-Bedside : Admin Module

Design Document

Document Change History

Version Number Date Contributor Description

V1.0 draft June 21,

2008
Washington

University/Persistent
Systems

Draft document

V1.0 July 22,
2008

Washington
University/Persistent

Systems

Reviewed and updated
for caB2B v2.0 release

This is a U.S. Government work. July 21, 2008

CABENCH-TO-BEDSIDE

ADMIN MODULE V1.0

caBench-To-Bedside : Admin Module

Model caBIG™ Open Source Software License
v.2

Release Date: January 7, 2008

Copyright Notice. Copyright 2008 School of Medicine, Washington University in St.
Louis (“caBIG™ Participant”). ca Bench-to-Bedside was created with NCI funding and is
part of the caBIG™ initiative. The software subject to this notice and license includes
both human readable source code form and machine readable, binary, object code form
(the “caBIG™ Software”).
This caBIG™ Software License (the “License”) is between caBIG™ Participant and You.
“You (or “Your”) shall mean a person or an entity, and all other entities that control, are
controlled by, or are under common control with the entity. “Control” for purposes of this
definition means (i) the direct or indirect power to cause the direction or management of
such entity, whether by contract or otherwise, or (ii) ownership of fifty percent (50%) or
more of the outstanding shares, or (iii) beneficial ownership of such entity.

License. Provided that You agree to the conditions described below, caBIG™
Participant grants You a non-exclusive, worldwide, perpetual, fully-paid-up, no-charge,
irrevocable, transferable and royalty-free right and license in its rights in the caBIG™
Software, including any copyright or patent rights therein, to (i) use, install, disclose,
access, operate, execute, reproduce, copy, modify, translate, market, publicly display,
publicly perform, and prepare derivative works of the caBIG™ Software in any manner
and for any purpose, and to have or permit others to do so; (ii) make, have made, use,
practice, sell, and offer for sale, import, and/or otherwise dispose of caBIG™ Software
(or portions thereof); (iii) distribute and have distributed to and by third parties the
caBIG™ Software and any modifications and derivative works thereof; and (iv)
sublicense the foregoing rights set out in (i), (ii) and (iii) to third parties, including the
right to license such rights to further third parties. For sake of clarity, and not by way of
limitation, caBIG™ Participant shall have no right of accounting or right of payment from
You or Your sublicensees for the rights granted under this License. This License is
granted at no charge to You. Your downloading, copying, modifying, displaying,
distributing or use of caBIG™ Software constitutes acceptance of all of the terms and
conditions of this Agreement. If you do not agree to such terms and conditions, you
have no right to download, copy, modify, display, distribute or use the caBIG™ Software.
Your redistributions of the source code for the caBIG™ Software must retain the above
copyright notice, this list of conditions and the disclaimer and limitation of liability of
Article 6 below. Your redistributions in object code form must reproduce the above
copyright notice, this list of conditions and the disclaimer of Article 6 in the
documentation and/or other materials provided with the distribution, if any.
Your end-user documentation included with the redistribution, if any, must include the
following acknowledgment: “This product includes software developed by School of
Medicine, Washington University in St. Louis.” If You do not include such end-user
documentation, You shall include this acknowledgment in the caBIG™ Software itself,
wherever such third-party acknowledgments normally appear.
You may not use the names “School of Medicine, Washington University in St. Louis”,
“The National Cancer Institute”, “NCI”, “Cancer Bioinformatics Grid” or “caBIG™” to
endorse or promote products derived from this caBIG™ Software. This License does
not authorize You to use any trademarks, service marks, trade names, logos or product
names of either caBIG™ Participant, NCI or caBIG™, except as required to comply with
the terms of this License.

caBench-To-Bedside : Admin Module

For sake of clarity, and not by way of limitation, You may incorporate this caBIG™
Software into Your proprietary programs and into any third party proprietary programs.
However, if You incorporate the caBIG™ Software into third party proprietary programs,
You agree that You are solely responsible for obtaining any permission from such third
parties required to incorporate the caBIG™ Software into such third party proprietary
programs and for informing Your sublicensees, including without limitation Your end-
users, of their obligation to secure any required permissions from such third parties
before incorporating the caBIG™ Software into such third party proprietary software
programs. In the event that You fail to obtain such permissions, You agree to indemnify
caBIG™ Participant for any claims against caBIG™ Participant by such third parties,
except to the extent prohibited by law, resulting from Your failure to obtain such
permissions.
For sake of clarity, and not by way of limitation, You may add Your own copyright
statement to Your modifications and to the derivative works, and You may provide
additional or different license terms and conditions in Your sublicenses of modifications
of the caBIG™ Software, or any derivative works of the caBIG™ Software as a whole,
provided Your use, reproduction, and distribution of the Work otherwise complies with
the conditions stated in this License.
THIS caBIG™ SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESSED OR
IMPLIED WARRANTIES (INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, NON-INFRINGEMENT AND FITNESS FOR A
PARTICULAR PURPOSE) ARE DISCLAIMED. IN NO EVENT SHALL THE SCHOOL
OF MEDICINE, WASHINGTON UNIVERSITY IN ST. LOUIS OR ITS AFFILIATES BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT
OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR
BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
caBIG™ SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

caBench-To-Bedside : Admin Module

Index
CHAPTER 1 INTRODUCTION... 1

CHAPTER 2 LOADING MODELS ... 2

OVERVIEW ... 2

APIS USED... 2

IMPLEMENTATION .. 3

SEQUENCE DIAGRAM ... 4

CHAPTER 3 CONFIGURE SERVICE INSTANCES.. 6

OVERVIEW ... 6

APIS USED... 6

APPLICATION FLOW.. 7

DATABASE SCHEMA.. 7

CHAPTER 4 DIRECTED ACYCLIC GRAPH (DAG).. 8

OVERVIEW ... 8

CLASS DIAGRAM... 8

CHAPTER 5 CURATE PATH.. 10

CLASS STRUCTURE .. 10

DATABASE SCHEMA.. 12

USER INTERFACE ... 13

SEQUENCE DIAGRAM ... 15

CHAPTER 6 CATEGORY CREATION... 16

OVERVIEW ... 16

SEQUENCE DIAGRAMS.. 16

CHAPTER 7 INTERMODEL JOIN .. 18

OVERVIEW ... 18

CLASS STRUCTURE .. 18

DATABASE SCHEMA.. 18

SEQUENCE DIAGRAM ... 19

caBench-To-Bedside : Admin Module

List of Figures

Figure 1 Sequence diagram depicting fetching all available models4

Figure 2 Sequence diagram depicting fetching selected model5

Figure 3 Class diagram of DAG...8

Figure 4 Path Curation Interfaces..10

Figure 5 Path Curation Java beans ...11

Figure 6 User Interface diagram of Curate Path ..13

Figure 7 Class diagram of Curate Path UI ...14

Figure 8 Sequence diagram of path curation...15

Figure 9 Category creation with Manual Connect ..16

Figure 10 Category creation with Auto Connect ..17

Figure 11 Sequence diagram of InterModel Join ...19

caBench-To-Bedside : Admin Module Chapter 1–Introduction

Page 1

Chapter 1 Introduction
This document explains the design of the components and modules present in
caBench-To-Bedside Administrator (caB2B-Admin) project. It provides details of
different components that are being developed as a part of caB2B-Admin
application.

caBench-To-Bedside : Admin Module Chapter 2–Loading Models

Page 2

Chapter 2 Loading Models

Overview
One of the basic requirements of caB2B is to be able to fetch models from the
caDSR and populate metadata repository (MDR) from that. It will be used to build
metadata based queries to fetch data from data services. In order to understand
the design of load model in cab2b admin it is necessary to first understand the
design and concept of MDR.

MDR stores the metadata for an UML model including its semantic annotations
such as all CDEs including permissible values by decomposing the annotated
UML model obtained from caDSR.

It also contains all-to-all paths between every two classes. Given the amount of
information it stores, it is also possible to get all the paths between two classes
across two different UML models based on semantic interoperability.

The design of MDR is the basic foundation for caB2B backend. It enables the
caB2B query engine to provide the following functionalities:

• Metadata search

• Auto generation of user interface for entering predicates

• Automatic path resolution between two query predicates

• Category support

• Inter model queries based on semantic joins

APIs Used
Following APIs are used to fetch the DomainModel from caDSR.

Classes used are

To get projects from caDSR

To generate models from projects

caBench-To-Bedside : Admin Module Chapter 2–Loading Models

Page 3

Implementation

Process of loading models
Process of loading models can be divided into two steps

• Fetching all the available models to load

In the first step all the models available for the loading are fetched. Only
the models which are not present in the local database are shown to the
user for selection.

• Loading the user selected models

In this step user selects the models to be loaded from UI. These user
selected models are then loaded into the MDR.

Classes involved
The classes involved in this module are:

• SearchDataHeader.jsp is the starting point for the Load Model
functionality where user selects the Load Model link from the popup menu
list.

• CaDSRLoadModel.java is the struts action called by the Load Model
button; this class is a controller used to control the flow of the request.

• CaDSRLoadModelBizLogic.java is used to get all the model names
available for loading. This class uses CaDSRServiceClient to fetch all the
models for loading. All these models are then filtered so as to choose only
models that not already present in the local database. This class is also
responsible for loading user selected models into the MDR using
PathBuilder.

• PathBuilder.java class is responsible for loading the model into MDR

• LoadModel.jsp is the UI page which displays the model names and
description for that model. It also allows user to select the multiple models
to load.

• LoadModel.java is the struts action which is called by the LoadModel.jsp
page.

caBench-To-Bedside : Admin Module Chapter 2–Loading Models

Page 4

Sequence Diagram

Fetch All Available Models

sd Fetch All Model

Admin

SearchDataHeader.jsp CaDSRLoadModel

CaDSRModelBizLogic

LoadModel.jsp

CaDSRServiceClient.java

Load Model Link

execute()

getProjectsDisplayDetai ls()

getCaDSRServiceClient()

new

findAl lProjects()

Project[]

List<CaDSRModelDetai lsBean>

List<CaDSRModelDetai lsBean>
aval iable

models to

load

Figure 1 Sequence diagram depicting fetching all available models

caBench-To-Bedside : Admin Module Chapter 2–Loading Models

Page 5

 Fetch Model

sd Load M odel

Adm in

LoadM odel .jsp LoadModel.java CaDSRModelBizLogic.java

CaDSRServiceCl ient.java

PathBuilder

selects model

to load

execute()

getAl lM odelNames()

persistDomainM odel (ListOfM odelsToLoad)

getDomainModel (projectLongNam e)

getCaDSRServiceClient()

generateDomainModelForProject(project)

Dom ainModel

loadSingleModelFromParserObject()

M ap<String, String>

String

Status of the

load M odels

Figure 2 Sequence diagram depicting fetching selected model

caBench-To-Bedside : Admin Module Chapter 3–Configure Service Instances

Page 6

Chapter 3 Configure Service

Instances

Overview
Service instance configuration from admin module involves configuring the URLs
of the different services for which the models are already loaded in the
application. One model can have multiple service instances configured for it. This
involves two stages:

• Fetching the list of all the services available for a certain model

• Saving the selected instances’ URLs into database.

APIs Used
Following are the APIs used for service instance configuration functionality

 Classes used are

Fetching service instances:

Fetching metadata for each instance:

caBench-To-Bedside : Admin Module Chapter 3–Configure Service Instances

Page 7

Application flow
Under Search Data menu, administrator selects “Service Instance”. The admin
will be shown models currently present in MDR.

User clicks on the model name to see running services which are using that
model Name of the selected model is passed to DiscoveryClient ‘s method,
discoverDataServicesByDomainModel(String modelName). It returns
EndPointReferenceType[].

Metadata for each of the EndPointReferenceType is fetched using methods on
MetadataUtils class.

Using this metadata, an object of ServiceMetadata class is created for each of
the EndPointReferenceType.

The ServiceMetadata objects are used to display hosting center’s information.

User selects the instances that are to be saved. These are saved through
saveServiceInstances(Collection<AdminServiceMetadata>
serviceMetadataObjects, String userName) in ServiceInstanceBizLogic class.

Database schema
The DDL of the tables will be

caBench-To-Bedside : Admin Module Chapter 4–Directed Acyclic Graph (DAG)

Page 8

Chapter 4 Directed Acyclic Graph

(DAG)

Overview

Directed Acyclic Graph (DAG) is a component to be used in a web application which
allows user to build and visualize graph. It is developed in Flex and is shared between
following functionalities:

1. Create category

2. Define intermodel joins

3. Curate Paths

Class Diagram

cd Class Model

CategoryDagPanel

DAGPanel

+ createNode(String, long, String) : DAGNode

+ deleteLink(List, String) : void

+ deleteNode(int) : boolean

+ getPathDisplayString(IPath) : String

+ getPaths(List) : Map

CategoryDagPanel

+ CategoryDagPanel()

+ checkMultipleRoot() : boolean

+ createInterModelJoin(int, int, String) : DAGLink

+ createNode(String, String) : DAGNode

+ deleteLink(List<DAGNode>, String) : void

+ deleteNode(long) : void

+ editNode(String, String) : DAGNode

+ getAttributePair() : AttributePair

+ getAutoConnectPaths(Set<DAGNode>) : String

+ getDagNodeSet() : Set<DAGNode>

+ getDagPathSet() : Set<DAGLink>

+ getIdVsPathMap() : Map

+ getLimitUI(int) : String

+ getPathDisplayString(IPath) : String

+ getpaths(List) : Map<String, List<DAGLink>>

+ handleSpecialCharacter(String) : String

+ initCategoryDagPanel() : void

+ isSameEntityGroup(int, int) : boolean

+ linkNodes(List<DAGNode>, DAGLink) : List<DAGLink>

+ makeXML(Map<List, String>) : String

+ repaintDAG() : Map

+ setNodeID(int) : void

+ updateAutoConnect(List<DAGNode>, List<DAGLink>) : void

Externalizable

DAGObject

+ DAGObject()

+ getNodeId() : long

+ getNodeName() : String

+ getToolTip() : String

+ readExternal(ObjectInput) : void

+ setNodeId(long) : void

+ setNodeName(String) : void

+ writeExternal(ObjectOutput) : void

DAGNode

+ equals(Object) : boolean

+ getAttributeList() : List<String>

+ getEntityId() : long

+ getToolTip() : String

+ getXCordinate() : int

+ getYCordinate() : int

+ hashCode() : int

+ readExternal(ObjectInput) : void

+ setAttribute(List) : void

+ setEntityId(int) : void

+ setToolTip(String) : void

+ writeExternal(ObjectOutput) : void

DAGLink

+ getDestinatioNodeId() : long

+ getPathId() : String

+ getSourceNodeId() : long

+ getToolTip() : String

+ isSelected() : boolean

+ readExternal(ObjectInput) : void

+ setDestinationNodeId(long) : void

+ setPathId(String) : void

+ setSelected(boolean) : void

+ setSourceNodeId(long) : void

+ setToolTip(String) : void

+ wri teExternal(ObjectOutput) : void

Figure 3 Class diagram of DAG

caBench-To-Bedside : Admin Module Chapter 4–Directed Acyclic Graph (DAG)

Page 9

Description of classes:

• DAGObject: This class represents the basic structure of Directed Acyclic
Graph (DAG).

• DAGNode: Each entity is represented by a DAGNode in DAGView.
Each DAGNode has a unique Id and toolTip which shows all the
attributes of an entity added in DAGView.

• DAGLink: It represents the link between two entities added as DAGNode.

• DAGPanel: This is a abstract class.

• CategoryDagPanel: It represents all the business methods called from
Flex UI part .It is registered in remote-config.xml to create the
communication between Flex (UI part) to server (java classes). This class
gets called by DAG.mxml .

caBench-To-Bedside : Admin Module Chapter 5–Curate Path

Page 10

Chapter 5 Curate Path

Class Structure
Refer to the requirement document to understand the expected functionality of
path curation. IAssociation represents a direct linkage between two classes.
There are two extensions of IAssociation. IIntraModelAssociation represent the
link between two classes from the same model. IInterModelAssociation represent
the link between two classes from different models.

An IPath represents a navigable way between a source and a destination class.
It is composted list of IAssociation. It will have at least one

ICuratedPath is defined for set of entities (classes), it is composed of one or
many IPath which form a non-cyclic graph between given set of entities.

The implementing classes of these interfaces are hibernate objects. Save-
Update-delete operations will be performed using DAO pattern. The interface
structure will be as follows

Interface diagram

class Path Curation

Serializable

«interface»

IAssociation

+ getSourceEntity() : EntityInterface

+ getTargetEntity() : EntityInterface

+ isBidirectional() : boolean

+ reverse() : IAssociation

«interface»

IInterModelAssociation

+ getSourceAttribute() : AttributeInterface

+ getSourceServiceUrl() : String

+ getTargetAttribute() : AttributeInterface

+ getTargetServiceUrl() : String

+ reverse() : IInterModelAssociation

+ setSourceServiceUrl(String) : void

+ setTargetServiceUrl(String) : void

Serializable

«interface»

ICuratedPath

+ getCuratedPathId() : long

+ getEntitySet() : Set<EntityInterface>

+ getPaths() : Set<IPath>

+ isSelected() : boolean

Serializable

«interface»

IPath

+ getIntermediateAssociations() : List<IAssociation>

+ getPathId() : long

+ getSourceEntity() : EntityInterface

+ getTargetEntity() : EntityInterface

+ isBidirectional() : boolean

+ reverse() : IPath

«interface»

IIntraModelAssociation

+ getDynamicExtensionsAssociation() : AssociationInterface

+ reverse() : IIntraModelAssociation

1.. *

1.. *

Figure 4 Path Curation Interfaces

caBench-To-Bedside : Admin Module Chapter 5–Curate Path

Page 11

Class Diagram
The classes involved in the path curation will be as follows

• ModelAssociation implements IAssociation

• InterModelAssociation implements IInterModelAssociation extends
ModelAssociation

• IntraModelAssociation implements IIntraModelAssociation extends
ModelAssociation

• Path implements IPath

• CuratedPath implements ICuratedPath

class Path Curation Impl

impl::InterModelAssociation

- sourceAttribute: AttributeInterface

- sourceAttributeId: Long

- sourceServiceUrl: String

- targetAttribute: AttributeInterface

- targetAttributeId: Long

- targetServiceUrl: String

impl::IntraModelAssociation

- dynamicExtensionsAssociation: AssociationInterface

- dynamicExtensionsAssociationId: Long

impl::

ModelAssociation

id: Long

path::CuratedPath

- curatedPathId: long

- entitySet: Set<EntityInterface>

- paths: Set<IPath>

- selected: boolean

path::Path

- intermediateAssociations: List<IAssociation>

- pathId: long

- sourceEntity: EntityInterface

- targetEntity: EntityInterface

+paths

1.. *

+intermediateAssociations

1..* {ordered}

Figure 5 Path Curation Java beans

caBench-To-Bedside : Admin Module Chapter 5–Curate Path

Page 12

Database schema
/*

 * INTERMEDIATE_PATH contains ASSOCIATION(ASSOCIATION_ID)

 * connected by underscore

 */

create table PATH(

 PATH_ID bigint not null,

 FIRST_ENTITY_ID bigint null,

 INTERMEDIATE_PATH varchar(1000) null,

 LAST_ENTITY_ID bigint null,

 primary key (PATH_ID),

 index INDEX1 (FIRST_ENTITY_ID,LAST_ENTITY_ID)

);

/* Possible values for ASSOCIATION_TYPE are 1 and 2

 * ASSOCIATION_TYPE = 1 represents INTER_MODEL_ASSOCIATION.

 * ASSOCIATION_TYPE = 2 represents INTRA_MODEL_ASSOCIATION.

 */

create table ASSOCIATION(

 ASSOCIATION_ID bigint not null,

 ASSOCIATION_TYPE INT(8) not null ,

 primary key (ASSOCIATION_ID)

);

create table INTER_MODEL_ASSOCIATION(

 ASSOCIATION_ID bigint not null references

 ASSOCIATION(ASSOCIATION_ID),

 LEFT_ENTITY_ID bigint not null,

 LEFT_ATTRIBUTE_ID bigint not null,

 RIGHT_ENTITY_ID bigint not null,

 RIGHT_ATTRIBUTE_ID bigint not null,

 primary key (ASSOCIATION_ID)

);

create table INTRA_MODEL_ASSOCIATION(

 ASSOCIATION_ID bigint not null references

ASSOCIATION(ASSOCIATION_ID),

 DE_ASSOCIATION_ID bigint not null,

 primary key (ASSOCIATION_ID)

);

create table CURATED_PATH (

 curated_path_Id BIGINT,

 entity_ids VARCHAR(1000),

 selected boolean,

 primary key (curated_path_Id)

);

/*this is mapping table for many-to-many relationship between

tables PATH and CURATED_PATH */

create table CURATED_PATH_TO_PATH (

 curated_path_Id BIGINT references CURATED_PATH

(curated_path_Id),

 path_id BIGINT references PATH (path_id),

 primary key (curated_path_Id,path_id));

caBench-To-Bedside : Admin Module Chapter 5–Curate Path

Page 13

User interface
The user interface of the path curation will be created using Flex. The
communication between Flex and java will happen as shown in the diagram
below.

Figure 6 User Interface diagram of Curate Path

DAGObject: It is a java bean, which is base class for all the components that can
be displayed in

AmbiguityPanel.mxml: Flex component to show all the paths and allows admin
to choose one which will be part of curated path.

DAGNode.mxml: Flex component to represent a link between two nodes. The
java representation of this is DAGNode

DAGPath.mxml: Flex component to represent a link between two nodes. The
java representation of this is DAGLink

DAG.mxml: Main flex component which displays all other components. This is
the class which will get called from java script. This is flex side of the component

CategoryDAGpanel: All communication from java to flex will be handled by
HTTPSevice calls between DAG.mxml and CategoryDAGpanel .This extends
DAGPanel and implements all the business logic.

DAGPanel: It contains all the business logic needed for path curation.

caBench-To-Bedside : Admin Module Chapter 5–Curate Path

Page 14

class System

DAGObject

- id: int

- name: String

+ getTooltip() : String

+ readExternal(ObjectInput) : void

+ writeExternal(ObjectOutput) : void

«property get»

+ getid() : int

+ getname() : String

«property set»

+ setid(int) : void

+ setname(String) : void

DAGNode

- xCordinate: int

- yCordinate: int

+ getTooltip() : String

«property get»

+ getxCordinate() : int

+ getyCordinate() : int

«property set»

+ setxCordinate(int) : void

+ setyCordinate(int) : void

DAGLink

- condition: String

- destinationNodeId: int

- sourceNodeId: int

+ getTooltip() : String

«property get»

+ getcondition() : String

+ getdestinationNodeId() : int

+ getsourceNodeId() : int

«property set»

+ setcondition(String) : void

+ setdestinationNodeId(int) : void

+ setsourceNodeId(int) : void

DAGPanel

+ createNode(String, long, String) : DAGNode

+ deleteNode(int) : boolean

+ linkNodes(List, DAGNode, DAGNode) : void

+ repaint() : void

Figure 7 Class diagram of Curate Path UI

caBench-To-Bedside : Admin Module Chapter 5–Curate Path

Page 15

Sequence Diagram

sd Class Model

Dag.swf CategoryDagPanel

administrator

MetaDataSearch

CuratePath

Screen

CommonPathFinderCuratePath PathBizLogic

search
MetaData

add Entities

getCuratePath

getCuratePaths(
sourceEntity,

targetEntity)

showPopUp hav ing Curate Paths

select Curate Path and Sav e

execute()

sav eCuratePath

(curatePath)

success status

saved status

Figure 8 Sequence diagram of path curation

After searching the classes from metadata search, administrator can define
curate paths among these classes. On clicking the links of searched classes will
add them into the DAG, select two classes at a time and click on the manual
connect button on the DAG.

At this action DAG.mxml calls the getPaths() of CategoryDagPanel which calls
the getCuratePaths(sourceEntity,targetEntity) of CommonPathFinder .It
returns the curate paths between sourceEntity class and targetEntity class.

If there are multiple paths, ambiguity resolver pops up with all paths between
source class and target class. This activity is performed for each set of classes
user wants to connect. Clicking of save button will save the selected path by
calling saveCuratePath(curatePath) of PathBizLogic. This method will save the
curated path for the selected classes.

caBench-To-Bedside : Admin Module Chapter 6–Category Creation

Page 16

Chapter 6 Category Creation

Overview
In Create Category module, different entities or classes can be combined
together to generate a category. The attributes that are selected form the
different entities will now collectively become attributes of category. This is
analogous to join of SQL.

Sequence Diagrams

sd Class Model

CategoryDagPanel

CreateCategoryScreen

DAG CommonPathFinder CreateCategoryAttributeOrder PersistCategory

metaDataSearch

& add entity
Mannual

Connect
getPaths(sourceEntity,

targetEntity) getAllPaths(sourceEntity,

targetEntity)
show all paths and

curate path between

selected entities

select path , if multiple path exists and click next

edit attributes

and save
persistCategory(inputCategory)

Category Saved status

Figure 9 Category creation with Manual Connect

caBench-To-Bedside : Admin Module Chapter 6–Category Creation

Page 17

sd Class Model

CategoryDagPanel

CreateCategoryScreen

DAG CommonPathFinder CreateCategoryAttributeOrder PersistCategory

metaDataSearch

& add entity AutoConnect

getAutoConnectPaths

(entitySet)
autoConnect(entitySet)

show curated paths if

exists among selected

entities

select path , if multiple path exists and click next
edit attributes and save

persistCategory(inputCategory)

Category Saved status

Figure 10 Category creation with Auto Connect

Description:

After adding entities into DAG, existing paths between two selected entities can
be shown by either by clicking Manual Connect button or Auto Connect button.

On clicking Manual Connect, DAG.mxml calls getPaths(soruceEntity,targetEntity)
of CategoryDagPanel which subsequently calls the
getAllPath(soruceEntity,targetEntity) of CommonPathFinder. This activity returns
the general/curate paths between the source and target entity. If multiple
general/curate paths exist between the source and target entity, then Ambiguity
Resolver pops up showing all the genera/curated paths.

On clicking AutoConnect button, DAG,mxml class calls getAutoPaths(entitySet)
of CategoryDagPanel which calls the autoConnect(entitySet) of
CommonPathFinder. If multiple paths exist among selected entities, then
Ambiguity Resolver pops up showing all the paths. Clicking of Next button shows
all the attributes for this category in editable form on
CretaeCategoryAttributeOrder.jsp. Administrator can edit the attributes names
here. On clicking Save button, persistCategory(inputCategory) of
PersistCategory will be called which saves the category.

caBench-To-Bedside : Admin Module Chapter 7–InterModel Join

Page 18

Chapter 7 InterModel Join

Overview
In InterModel Join module, the concept of path curation is extended for defining
paths across different models. The matching attribute is used in joining and the
classes are end points of that inter-model bridge.

Class Structure
Classes involved in this module are as follows:

• InterModelConnection, is the domain object that represents the
connection or link between two entities, both from different models.

• InterModelConnectionsUtil, contains the business logic that is needed
for the creating and persisting the InterModel connection.

• InterModelMatching, is the action class that gets two selected entities
form UI and determines the possibility of their connection by calling,
InterModelConnectionsUtil.determineConnections(entity1, entity2)
method. If the two entities can be connected then it redirects the result
and displays the set of attributes, through which the connection can be
established.

• PersistInterModel, is the action class that gets the attribute pair from the
UI and saves the InterModel connection by calling,
InterModelConnectionsUtil.saveInterModelConnection(attributePair)
method.

Database schema
Save-Update-delete operations will be performed using DAO pattern.

The DDL of the tables will be

drop table if exists ASSOCIATION;

drop table if exists INTER_MODEL_ASSOCIATION;

/* Possible values for ASSOCIATION_TYPE are 1 and 2

ASSOCIATION_TYPE = 1 represents INTER_MODEL_ASSOCIATION.

ASSOCIATION_TYPE = 2 represents INTRA_MODEL_ASSOCIATION.

*/

create table ASSOCIATION(

 ASSOCIATION_ID bigint not null,

 ASSOCIATION_TYPE INT(8) not null ,

 primary key (ASSOCIATION_ID)

);

create table INTER_MODEL_ASSOCIATION(

ASSOCIATION_ID bigint not null references

ASSOCIATION(ASSOCIATION_ID),

caBench-To-Bedside : Admin Module Chapter 7–InterModel Join

Page 19

 LEFT_ENTITY_ID bigint not null,

 LEFT_ATTRIBUTE_ID bigint not null,

 RIGHT_ENTITY_ID bigint not null,

 RIGHT_ATTRIBUTE_ID bigint not null,

 primary key (ASSOCIATION_ID)

);

Sequence Diagram

cd Logical View

ConnectCategory.jsp InterModelConnectionsUtil

InterModelMatching

InterModelMatchingPairs.jsp

PersistInterModel

{Selected Entities are not

form same EnityGroup }

[Ids of selected Entities are

stored in session]: execute

attributePairSet=

determineConnections(entity1,

entity2)

[attributePairSet,

entity1, entity2

are in session]:

getSelectedValues

[Selected attributePair is in session]: execute

saveInterModelConnection(attributePair)

Figure 11 Sequence diagram of InterModel Join

Description:

On ConnectCategory.jsp, user selects the two node added in the DAG. Clicking
“Join Classes” button invokes InterModelMaching action. Selected entities are
passed to it via session.

InterModelMaching action class in turn invokes the determineConnections() of
InterModelConnectionsUtil. This method determines the matching factor between
the two selected classes as per the following procedure.

caBench-To-Bedside : Admin Module Chapter 7–InterModel Join

Page 20

For curating path across two models, the administrator adds two classes, which
will be the end points of inter-model bridge, in the DAG. To connect these two
ends of the bridge, following process is compiled. In the process, each
successive step is reached only if no results are found in the previous step.

Step 1: In models from caDSR, public ID is defined only for attributes. An
attribute’s public ID is same as the Data Element public ID from the CDE
browser. The application shows exact common data element (CDE)
matches. e. g. application show attributes which belongs to bridge
classes and which have the same public ID.

Step 2: Showing exact data element concept (DEC) match. Ideal way of
doing this is matching their public ID. As these public IDs are absent in
XML, this is simulated by matching the concept codes of attribute and
class (not value domain) in order. If they match, that attribute is eligible
for joining.

Step 3: Showing attributes having same concept codes in the same order
(i.e. property and property qualifier concept codes are in the same order).

Step 4: Showing all attributes of bridge classes and ask the Administrator
to select attributes to be used to join. This is manual join.

The returns set of matching attribute pairs which are displayed on
InterModelMatchingPairs.jsp.

On this page user selects the pair to be used as join between the two classes.
The pair is reflected in the DAG as a link between the two selected classes.

Clicking Save Join button on ConnectCategory.jsp invokes PersistInterModel
action which takes selected attributePair via session.

PersistInterModel action class invokes saveInterModelConnection() of
InterModelConnectionsUtil . This creates the join between the inter-model classes.

